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Two Core Radii For Minimum Total Dispersion In
Single-Mode Step-Index Optical Fibers
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Abstract —Starting from the operating wavelength and the chemical
composition of the materials that integrate the core and cladding of an
optical fiber, a method was developed for the calculation of the values of
the core radii; it allows fiber operation in a monomode region with
minimum total dispersion.

The study is restricted to step-index fibers and the selected theoretical
model is based on the weakly-guiding characteristic equation. From these
considerations it is possible to obtain two different values of core radii for
a given source operating wavelength.

The theory described allows the characterization of an optical fiber for
use with a given light source and extends a previously described theory.

I. INTRODUCTION

The spread of light pulses transmitted through single-mode
optical fibers is caused by two main factors, material dispersion
and waveguide dispersion. The first factor results from the depen-
dence of the refractive indexes of the materials used in the
construction of the core and cladding of the optical fiber on the
wavelength. The second factor takes into consideration the effect
of the geometry of the guiding structure (the optical waveguide)
on its fundamental mode. Both factors combine and the result is
known as the total dispersion. It is worth mentioning that this
combination does not result from the simple addition of the two
factors mentioned above but rather it is much more complex than
this [1], [2].

In order to reduce as much as possible the pulse spread and
obtain as a consequence an increase in the operating passband
available, optical fibers with minimum total dispersion at the
source wavelength, A =7\, should be used. The value of A is
obtained through the solution of the total dispersion equation.

Various methods have been proposed for solving this problem.
In the case of single-mode step-index optical fibers these methods
are essentially based on three procedures: 1) the use of the
weakly guiding characteristic equation [1], [4], [5]: 2) the use of
asymptotic approximations for the ecigenvalues of the weakly
guiding characteristic equation [6], [8], [9]; and 3) the use of the
exact characteristic equation [3].
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For the calculation of the wavelength for minimum total dis-
persion A, using the exact characteristic equation, the complexity
of the algorithms used and the large number of data to be
manipulated [3] require computer systems of medium or large
size. When the weakly guiding characteristic equation is used, the
amount of data to be manipulated is reduced due to the relative
simplicity of the equations and algorithms involved. When
asymptotic approximations are used the computational proce-
dures may be implemented on small programmable calculators.
The use of any of these procedures will depend on the available
computational system and the required precision of the results.

For the calculation of A it is first necessary to have prior
knowledge of the optical-fiber physical characteristics, such as
the core radius and the chemical composition of the materials
used for the construction of the fiber core and cladding. Once the
value of A is found, the most appropriate optical source to
operate the fiber under minimum total dispersion may be chosen.
This is an analysis procedure where, given an optical fiber, the
optimum source to operate with the fiber can be found.

An opposite problem to the one just described, which consists
of synthesizing an optical fiber for optimal operation with a given
optical source, is usually of particular interest.

A method for accomplishing the synthesis of single-mode step-
index optical fibers has been reported in a previous work [10].
Asymptotic approximations proposed by Miyagi and Nishida [8]
were used in that work. The chemical composition of the core
and cladding materials were assumed known and the available
light source wavelength was chosen equal to A. In this case, the
total dispersion equation is used for the calculation of the fiber
core radius. From the characteristics of the method adopted, the
calculated radius is the one that allows pulse transmission with
minimum total dispersion when the fiber operates with the wave-
length of the available source. Due to its simplicity, all the
computational procedures were implemented on a small program-
mable calculator. However, due to the asymptotic approximation
used, only one value of radius for minimum total dispersion was
found. The existence of two core radii for the same value of A
was suggested in a previous work [3].

In the present work the weakly guiding characteristic equation
was used as the theoretical basis for the synthesis of single-mode
step-index optical fiber. The use of this equation allows for the
calculation of the two-core radii that yield minimum total disper-
sion, as predicted in [3]. As expected, the use of the weakly
guiding characteristic equation reduces the amount of data to be
manipulated and the complexity of the algorithms to be adopted.

In the following sections, a description of the theory is given
along with the results of a few cases.

II. Basic EQUATIONS ‘

The total dispersion equation which is the wavelength deriva-
tive of the transit time per unit fiber length, is given by {6]

Dr=(A/en){(1=b)v, + by +2b6 + b70/2
—(n,) [nynty + bo+ 00,2} (1)

where ¢ and A are the free-space phase velocity and wavelength
of the light wave, respectively; b is the normalized propagation
constant given by the relation
v w?
b=1— —V_E = 7 (2)
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U and W are the eigenvalues obtained from the weakly guiding
characteristic equation

UL(U) _
Jo(U)

WK(W)
Ko (W)

(3)
with

0<V=(U*+w)"? <2.40483 (4)
and J and K represent the Bessel and modified Hankel func-
tions, respectively. The parameter V is the normalized frequency
given by
’ 1/2
V=T(n%—n%) (5)
where « is the core radius and n, and n, are the refractive
indexes of the core and cladding materials, respectively. In ad-
dition

v, =nn'+(n ) j=12 (62)
¢=mn]—nyn) (6b)
0=n?—n3 (6¢)
n’=n%+b6. (6d)

The quantity », is the effective phase index. The prime (*) and
double prime () are used to indicate the first and second
differentiation with respect to the wavelength A, respectively.

The nonlinear dependence of the refractive indexes on the
wavelength is included by using the three-term Sellmeier equation

3 A[AZ
A;__lz=

j=1.

(7

=1

where A, are constants related to the number of particles in the
material that can oscillate at wavelengths /,. The derivatives of
the refractive indexes for use in (6) are obtained from (7) and
given by

(®)

3 3(332 1 2
1 ) AP(3N+12)
n=—-(n)+ ) —/——>=1, j=12. (9
, [ () lgl o )
The first and second derivatives of the normalized propagation
constant b, may be obtained from (2) and (3) with the result [4]

. 2U K3(w)

=" KE(W)A (10)

.20 Ki(w) 4t [ Ky(W)

R Kf(W)B (VA)[ K (W)
Ke(w)  Kg(w)\[w U K}(w)
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TABLE 1
VALUES OF RADII OF MONOMODE OPTICAL FIBERS WITH A
STEP-INDEX PROFILE FOR PULSE TRANSMISSION WITH MINIMUM
TOTAL DISPERSION

Operating Core radii and V-value for

Fiber Wavelength minimum total
{um) dispersion (um)
A A = 1.7542 a = 0.9622 a = 1.7500
vV = 0.8807 vV = 1.6018
a = 1.2696 a = 2.0131
Bt A =155 V = 0.9345 Vv = 1.4818

Note: Core material of fiber 4: 13.5-percent GeO, ~86.5-percent SiO,;
core material of fiber B: 7.0-percent GeO,-93.0-percent SiO,

where

A=(1/2)~(¢/9) (12)
B=(»—v,)/80-(4/8)"+(24/)). (13)

The two possible values of the core radius for minimum total
dispersion are obtained from (1) for a given value of A. Thus the
problem is reduced to the solution of the equation

(14)

where the symbol (%) is used to indicate the value for minimum
total dispersion. The two possible solutions for &, «;, and a,, are
called the core radii for minimum total dispersion.

Dr(A=A

oper) |, =0

III. NUMERICAL RESULTS

In Table I, a few pairs of core radii of optical fibers for pulse
transmission with minimum total dispersion at a given wave-
length are shown. The results shown are for two selected fibers.
These values were obtained by means of a computer program,
with a precision of up to 107%. For both fibers considered, the
cladding material is fused SiO,.

The behavior of the total dispersion as a function of the core
radius of the fiber at a given operating wavelength is shown in
Figs. 1 and 2. Note in these figures the pronounced dispersion
when only the core material is changed. This shows the influence
that the waveguide dispersion has on the choice of the core radius
for transmission with minimum total dispersion. This influence
has already been investigated in the case of using an asymptotic
approximation for the weakly guiding characteristic equation
[10].

IV. CoNcLusioN

A method based on the weakly guiding approximation useful
for the synthesis of single-mode step-index optical fibers for
operation with minimum total dispersion was presented. This
method is an extension of a previously presented one [10] and
allows the calculation of the second value of the fiber core radius,
not possible before. This method also served to verify that the
wave guide dispersion has a large influence on the calculated
values of core radii as shown here. However, it is important to
note that the smaller optimum core-diameter values might be
impractical because in such cases the field will spread to the
cladding region and bending-induced radiation loss will increase.
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SINGLE-MODE FIBER DESIGN AT ZERO-DISPERSION WAVELENGTH
DT (PS/(KM.NM)) CORE MATERIAL  13.5 GEO2 - 86.5 SI02
L 60 CLADDING MATERIAL  FUSED SI02
- 45
F 30
]
.68 216
A (MICROMETERS)

- 185
L -30
L -45

WAVELENGTH (MICROMETERS) 4.5500

DELTA  .0152
L 60 N4 1.4660

N2 1.4440
Fig 1 Synthesis of monomode fibers with step-index profile, implemented mn a desk calculator A =1.55 pm. Core material:

13.5-percent GeO, -86 5-percent Si0O,. Cladding matenal: fused SiO,.
SINGLE-MODE FIBER DESIGN AT ZERO-DISPERSION WAVELENGTH
DT (PS/{KM.NM)) CORE MATERIAL 7.0 GEO2 - 93.0 SI102
L 60 CLADDING MATERIAL  FUSED S102
- 45
- 30
1.64 1.88 24 2.44 2.74 2.99

4 I + I 4 +
+

A (MICROMETERS)

WAVELENGTH ( MICROMETERS) 4.5500 !
DELTA  .0079
N4 1.4554
N2 1.4440

Fig. 2. Same as in Fig. 1, with a core material: 7.0-percent GeO,-93.0-percent SiO,.
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On the Measurement of Noise Parameters of
Microwave Two-Ports

MARIAN W. POSPIESZALSKI, SENIOR MEMBER, IEEE

Abstract — A novel procedure for determining the noise parameters of
microwave two-ports is introduced. In this procedure, the computations
necessary to find the noise parameters from the set of measurements of
noise temperature (noise figure) are greatly simplified. The assessment of
accuracy with which the noise parameters can be determined from a given
set of measurement data is straightforward.

I. INTRODUCTION

A typical noise parameter measurement setup is schematically
shown in Fig. 1. The noise parameters of a device under test
(DUT) and those of a receiver are represented by pairs of noise
sources having correlation matrices [1]-[5]

2 K
e e, pl
[Cp] = *"f’ ‘; "P (1)
€uplyp [2))
2 3%
€ e, rl
[CR] = *né n.R " (2)
€iRrInR IyR
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Fig. 1. A typical noise parameter measurement setup.

respectively. These matrices have to be Hermitian and nonnega-
tive definite [3]-[5]. If the signal parameters of a DUT are given
by chain matrix [A], then the noise parameters of the cascade
connection of the DUT and receiver given in a form of correla-
tion matrix [C] are [5]

[C1 =[]+ ][ CrI[ 4] (3)
where the “dagger” designates the complex conjugate of the
transpose of [ A, ] matrix. Matrix [C] represents the noise param-
eters that can be determined at plane T (Fig. 1) by at least four
noise temperature (noise figure) measurements for different val-
ues of source impedance as provided by the impedance trans-
forming network. It is clear that if the noise parameters of a DUT
are desired, the receiver contribution can be removed using (3),
provided receiver noise parameters and device signal parameters
are known.

The noise temperature 7, of any linear two-port is most
commonly written in the following form [1], [2]:

|1 Z, ~ Z..|*
Ty = Ty + VT, o0
Rs Ropt
Y, - ¥, tlz
=T+ NTy— " (4
" GsGopl
where
N = Gn Ropt = RnGopt (5)
and
T minimum noise temperature,
T,=290K standard temperature,
Z,=R,+ jX, source impedance,
Y, =G, + jB, source admittance,
Zopy = Rop + JXop optimum source impedance,
Yoo = Gopy + By optimum source admittance,
R, noise resistance,
G, noise conductance.
Tons Rops Xopes G, and Ty, G, B, R, are the sets of

noise parameters equivalent to the correlation matrix [C] (ap-
propriate relations are given, for instance, in [2]). It has been
shown that both 7, ;, and the parameter N are invariant under
transformation through lossless reciprocal two-ports connected to
the input of a noisy two-port [2]. It also has been observed that
for T, and N to represent a physical two-port, the following
inequality has to be satisfied [6]:

T,

mmn

<4NT,.

(6)

This inequality (together with rather obvious conditions:
Tin=>0,G, >0 (or R, >0)) follows directly from the property
that the correlation matrices have to be Hermitian and nonnega-
tive definite. A simple physical interpretation of this inequality is
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