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Abstract — Starting from the operating wavelength and the chemical

composition of the materials that integrate the core and cladding of an

optical fiber, a method was developed for the calculation of the vaftres of

the core radlfi it allows fiber operation in a monomode region with

minimum total dispersion.

The study is restricted to step-index fibers and the selected theoretical

model is based on the weakly-guiding characteristic equation. From these

considerations it is possible to obtain two different vahres of core radii for

a given source operating wavelength.

The theory described allows the characterization of an opticaf fiber for

use with a given light source and extends a previously described theory.

I. INTRODUCTION

The spread of light pulses transmitted through single-mode

opticaf fibers is caused by two main factors, material dispersion

and waveguide dispersion. The first factor results from the depen-

dence of the refractive indexes of the materials used in the

construction of the core and cladding of the optical fiber on the

wavelength. The second factor takes into consideration the effect

of the geometry of the guiding structure (the optical waveguide)

on its fundamental mode. Both factors combine and the result is

known as the total dispersion. It is worth mentioning that this

combination does not result from the simple addition of the two

factors mentioned above but rather it is much more complex than

this [1], [2].

In order to reduce as much as possible the pulse spread and

obtain as a consequence an increase in the operating passband

available, optical fibers with minimum total dispersion at the

source wavelength, A = ~, should be used. The value of \ is

obtained through the solution of the total dispersion equation.

Various methods have been proposed for solving this problem.

In the case of single-mode step-index opticaf fibers these methods

are essentially based on three procedures: 1) the use of the

weakly guiding characteristic equation [1], [4], [5]: 2) the use of

asymptotic approximations for the eigenvalues of the weakly

guiding characteristic equation [6], [8], [9]; and 3) the use of the

exact characteristic equation [3].
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For the calculation of the Wavelength for minimum total dis-

persion ~, using the exact characteristic equation, the complexity

of the algorithms used and the large number of data to be

manipulated [3] require computer systems of medium or large

size. When the weakly guiding characteristic equation is used, the

amount of data to be manipulated is reduced due to the relative

simplicity of the equations and algorithms involved. When

asymptotic approximations are used the computational proce-

dures may be implemented on small programmable calculators.

The use of any of these procedures will depend on the available

computational system and the required precision of the results.

For the calculation of ~ it is first necessary to have prior

knowledge of the optical-fiber physical characteristics, such as

the core radius and the chemical, composition of the materials

used for t~e construction of the fiber core and cladding. Once the

value of A is found, the most appropriate optical source to

operate the fiber under minimum total dispersion may be chosen.

This is an analysis procedure where, given an opticaf fiber, the

optimum source to operate with the fiber can be found.

An opposite problem to the one just described, which consists

of synthesizing an optical fiber for optimaf operation with a given

opticaf source, is usually of particular interest.

A method for accomplishing the synthesis of single-mode step-

index opticaf fibers has been reported in a previous work [10].

Asymptotic approximations proposed by Miyagi and Nishida [8]

were used in that work. The chemicaf composition of the core

and cladding materials were assumed known and the available

light source wavelength was chosen equal to ~. In this case, the

total dispersion equation is used for the calculation of the fiber

core radius. From the characteristics of the method adopted, the

calculated radius is the one that allows pulse transmission with

minimum totaf dispersion when the fiber operates with the wave-

length of the available source. Due to its simplicity, all the

computational procedures were implemented on a small program-

mable calculator. However, due to the asymptotic approximation

used, only one value of radius for minimum total dispersion was

found. The existence of two core radii for the same value of ~

was suggested in a previous work [3].

In the present work the weakly guiding characteristic equation

was used as the theoretical basis for the synthesis of single-mode

step-index optical fiber. The use of this equation allows for the

calculation of the two-core radii that yield minimum total disper-

sion, as predicted in [3]. As expected, the use of the weakly

guiding characteristic equation reduces the amount of data to be

manipulated and the complexity of the algorithms to be adopted.

In the following sections, a description of the theory is given

along with the results of a few cases.

II. BASIC EQUATIONS

The total dispersion equation which is the wavelength deriva-

tive of the transit time per unit fiber length, is given by [6]

D~ = (~/cn<){(& b)v2 + bUl+2b’@+ b“6/2

-(ne)-’[n,rr~ + b++ b’d/2]’} (1)

where c and A are the free-space phase velocity and wavelength

of the light wave, respectively; b is the normalized propagation

constant given by the relation

~=1 u2_w’
~’ ~’

(2)
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U and W are the eigenvalues obtained from the weakly guiding

characteristic equation

UJ1(U) = w~l( ~)

JO(U) KO( W)
(3)

with

0sV=(U2+ W2)1’2S 2.40483 (4)

and J and K represent the Bessel and modified Hankel func-

tions, respectively. The parameter V is the normalized frequency

given by

(5)

where a is the core radius and nl and n* are the refractive

indexes of the core and cladding materials, respectively. In ad-

dition

v,=n,n;+(rj)z, j=l,2 (6a)

n2=n~+b6.e (6d)

The quantity ne is the effective phase index. The prime (’) and

double prime (“) are used to indicate the first and second

differentiation with respect to the wavelength A, respectively.

The nonlinear dependence of the refractive indexes on the

wavelength is included by using the three-term Sellmeier equation

3 A(A2
n; =l+l;l~? j=l,2 (7)

where A, are constants related to the number of particles in the

materiaf that can oscillate at wavelengths 1,. The derivatives of

the refractive indexes for use in (6) are obtained from (7) and

given by

(8)

[

()
1

~, -(n;)’+ ~ “1: 3A2+~ ,11,,= _
/

,=, (A’-l:)
j=l,2. (9)

The first and second derivatives of the normalized propagation

constant b, may be obtained from (2) and (3) with the result [4]

2U2 K;(w)
—.—

‘= ~2 K:(w)
A (lo)

+ K:(w) K:(W)

)(

U2 %(w)

WK; (W) + K:(W)
:+——

WV K;( W)
)

TABLE I

VALUES OF RADII OF MONOMODE OPTICAL FIBERS WITH A

STEP-INDEX PROFILE FOR PULSE TRANSMISSION WITH MINIMUM

TOTAL DISPERSION

Operating Core radii and V-value for

Fiber Wavelength mmmmm total

(urn) dispersion ( ~m)

A i . 1.7542
S = 0.9622 a . 1.7500

V = 0.8807 v = 1.6018

~ = 1.2696 ~ = 2.0131

B a. 1.55
v = 0.9345 V = 1.4818

Note: Core material of fiber A: 13.5-percent Ge02 –86.5-percent Si02;

core material of fiber B: 7. O-percent Ge02 –93.O-percent Si02

where

‘4= (l/A) –(@/o) (12)

B= (VI – V2)\0–(@/0)2 +(2xl/X). (13)

The two possible values of the core radius for minimum total

dispersion are obtained from (1) for a given value of ~. Thus the

problem is reduced to the solution of the equation

%(~=&)la=,=o (14)

where the symbol (A) is used to indicate the value for minimum

total dispersion. The two possible solutions for 2, al, and U2, are

called the core radii for minimum totaf dispersion.

111. NUMERICAL RESULTS

In Table I, a few pairs of core radii of opticaf fibers for pulse

transmission with minimum total dispersion at a given wave-

length are shown. The results shown are for two selected fibers.

These values were obtained by means of a computer program,

with a precision of up to 10– 6. For both fibers considered, the

cladding material is fused Si02.

The behavior of the total dispersion as a function of the core

radius of the fiber at a given operating wavelength is shown in

Figs. 1 and 2. Note in these figures the pronounced dispersion

when only the core material is changed. This shows the influence

that the waveguide dispersion has on the choice of the core radius

for transmission with minimum totaf dispersion. This influence

has already been investigated in the case of using an asymptotic

approximation for the weakly guiding characteristic equation

[10].

IV. CONCLUSION

A method based on the weakly guiding approximation useful

for the synthesis of single-mode step-index opticaf fibers for

operation with minimum total dispersion was presented. This

method is an extension of a previously presented one [10] and

allows the calculation of the second value of the fiber core radius,

not possible before. This method also served to verify that the

wave guide dispersion has a large influence on the calculated

values of core radii as shown here. However, it is important to

note that the smaller optimum core-diameter values might be

impractical because in such cases the field will spread to the

cladding region and bending-induced radiation loss will increase.
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SINGLE-MODE FIBER CESIGNAT ZERO-DISPERSIONWAVELENGTH
m (ps/(KM, NM)) CORE MATERIAL 13.5 QE02 - 86,5 S102

60 CLADOING MATERIAL FUSEO S102

45

30

15

.68 .87 1.05 1.24 1.42 1.61 1.79 1.9

A ( MICROMETERS)

-15

-xl

-45

~

WAVELENGTH ( MICROMETERS) 1.5500

-60

F,g 1 Synthesis of monomode fibers with step-index profile, Implemented m a desk calculator ~ = 1.55 pm. Core material:

13.5-percent Ge02 -86 5-percent Si02. Cladding material: fused Si02.

SINGLE-MODE FIBER DEStGNAT ZERO-DISPERSION WAVELENGTH
DT (pS/(KM. NM)) CORE MATERIAL 7.0 GE02 -93.0 SI02

60 CLAOOING MATERIAL FUSED SI02

45

30

15

.78 4.05 1.33 4.64 4.66 2.4

A ( MICROMETERS)

-45

-30

-45

-60

~’

F~g. 2. Same as in Fig. 1, with a core material: 7.O-percent Ge02 -93. O-percent Si02



456 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO. 4, APRIL 1986

ACKNOWLEDGMENT

The authors are thankful for the valuable discussions held with

Prof. Dr. David A. Rogers from North Dakota State University,

Fargo, ND.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[la]

REFERENCES

D. Marcuse, “Interdependence of waveguide and material dispersion.”

APDI. Opt., vol. 18, no. 7, pp. 2930-2932, Sept. 1979.

P- ‘S M. Fires and D. A-. ‘Rogers, “ Non-additivity of wavegmde and

material dispersion in single-mode step-index optical fibers: Exact anal-

ysls,” m Proc. URSI— Nat. Radio SCI. Meet., May 1982, pp. 22.

P. S. M Plres, D. A. Rogers, E. J. Bochove, and R. F. Souza, “Prediction

of laser wavelength for minimum total ihspersion m single-mode step-

index fibers,” IEEE Trans. MIcrowaue Theory Tech., vol. MTT-30, pp.

131-140, Feb. 1982.

C. T Chang, ‘<Minimum dispersion in single-mode step-index optical

fibers,” Appl. Opt., vol. 18, pp. 2516-2522. July 1979.
‘<Minimum dispersion at 1.55 pm for single-mode step-index

=’ Electron. Lett., vol. 15, no. 23, pp. 765-767, Nov. 1979.

C. R. South “Total dispersion in step-index monomode fibers.” E[ectron

fxvt., vol. 15, no. 13, pp. 394-395, June 1979.

P, S. M Pires, “Analysis of dispersion in single-mode step-index optlcaf

fibers without the use of asymptotic expressions,” M S.E.E thesis, State

Univ. of Campinas, Brazil, Aug. 1980, (in Portuguese)
M. Miyagi and S. Nishida, “An approximate formula for describing

dispersion properties of optical dielectric slab and fiber wavegmdes,” J.

Opt. Sot. Amer., vol 69, no. 2, pp. 291-293, Feb. 1979.

R. A, Sammut, “Analysis of approximation for the mode dispersion in

mcmomode fibers,” Electron Left., vol. 15, no. 19, pp. 590–591, Sept

1979.

P S, M Plres and D. A. Rogers, “Single-mode fiber design for minimum

dispersion,” IEEE Trans. MIcrowuue Theory Tech., vol. Ivf’rT-31, m. 11,
pp. 959-962, Nov. 1983.

M. Abramowitz and I A. Stegun, Handbook of Mathermmcal Functions,

US Dept. of Commerce, NB~, AMS-55, Dec.” 1972.

I W. Fleming, “Material dispersion in lightgmde glasses.”

Lett , vol. 14, xto. 11, pp 326-328, May 1978.

On the Measurement of Noise Parameters of

Microwave Two-Ports

MARIAN W. POSPIESZALSKI, SENIOR MEMBER, IEEE

.4struct — A novel procedure for determining the noise parameters of

microwave two-ports is introduced. In this procedure, the computations

necessary to find the noise parameters from the set of measurements of

noise temperature (noise figure) are greatly simplified. The assessment of

accuracy with which the noise parameters can he determined from a given

set of measurement data is straightforward.

I. INTRODUCTION

A typicaf noise parameter measurement setup is schematically

shown in Fig. 1. The noise parameters of a device under test

(DUT) and those of a receiver are represented by pairs of noise

sources having correlation matrices [1]–[5]

r.— 1

1 ‘n D‘;D
[c.] = ‘:” ~ 1 (1)

‘~Di), D n

‘cR]’[- +$1 ‘“
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Fig. 1. A typical noise parameter measurement setup.

respectively. These matrices have to be Hermitian and nonnega-

tive definite [3]–[5]. If the signaf parameters of a DUT are given

by chain matrix [AD], then the noise parameters of the cascade

connection of the DUT and receiver given in a form of correla-

tion matrix [C] are [5]

[C]=[CD] +[AD][CR][AD]t (3)

where the “dagger” designates the complex conjugate of the

transpose of [A ~ ] matrix. Matrix [C] represents the noise param-

eters that can be determined at plane T (Fig. 1) by at least four

noise temperature (noise figure) measurements for different val-

ues of source impedance as provided by the impedance trans-

forming network. It is clear that if the noise parameters of a DUT

are desired, the receiver contribution can be removed using (3),

provided receiver noise parameters and device signal parameters

are known.

The noise temperature ~, of any linear two-port is most

commonly written in the following form [1], [2]:

~, = Tm,n + N~
1-% - zopt12

R, Ropt

IK– VP,12
= Tm,n + NTO

G,Gopt

N = GHRopt = R,,Gopt

(4)

(5)

and

Tm,n minimum noise temperature,

&=290K standard temperature,

Z,= R,+ jX, source impedance,

~= G,+jB, source admittance,

%pt = R.pt + .LK.pt optimum source impedance,

I’&, = GC>Pt+ jBopt optimum source admittance,

R,, noise resistance,

G,, noise conductance.

T Ropt, Xopt, G,, and Tmin, Gopt, Bopt, Rn are. the sets ofmln *

noise parameters equivalent to the correlation matrix [C] (ap-

propriate relations are given, for instance, in [2]). It has been

shown that both T~i~ and the parameter N are invariant under

transformation through lossless reciprocal two-ports connected to

the input of a noisy two-port [2]. It also has been observed that

for ~m,~ and N to represent a physicaf two-port, the following

inequality has to be satisfied [6]:

Tm,n < 4NT0 , (6)

This inequality (together with rather obvious conditions:

Tmin >0, G,, >0 (or R ~ > O)) follows directly from the property

that the correlation matrices have to be Hermitian and nonnega-

tive definite. A simple physical interpretation of this inequality is
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